Differential Geometry IV: General Relativity

G. Moschidis30 Oct. 2024

- **7.1** For the following spacetimes, decide if they are globally hyperbolic or not. If they are, find a Cauchy hypersurface.
 - (a) The future timecone

$$I_{+}[0] = \{(x^{0}, \dots, x^{n}) : -(x^{0})^{2} + (x^{1})^{2} + \dots + (x^{n})^{2} < 0 \text{ and } x^{0} > 0\}$$

inside Minkowski spacetime (equipped with the Minkowski metric η).

(b) The spacetime (\mathbb{R}^{1+3}) equipped with a Lorentzian metric g which satisfies, in the Cartesian coordinates,

$$|g_{\alpha\beta} - \eta_{\alpha\beta}| < \frac{1}{10}$$

- (c) The 1 + 1 dimensional Anti-de Sitter spacetime from Exercise 6.3.
- **7.2** Let (\mathcal{M}, g) be a spacetime and let $p \in \mathcal{M}$.
 - (a) Show that if $q \in J^+(p)$, then there exists a sequence of points $q_n \in I^+(p)$ with $q_n \xrightarrow{n \to \infty} q$, i.e.

$$J^+(p) \subset \operatorname{clos}(I^+(p)).$$

Hint: Starting from a causal curve γ connecting p to q, you need to find a sequence of timelike curves γ_n emanating from p converging to γ . To this end, if T is a globally timelike vector field on \mathcal{M} , consider variations $\gamma_s(t)$ of $\gamma(t) = \gamma_0(t)$ such that the variation vector field $\frac{\partial}{\partial s}(\gamma_s(t))|_{s=0}$ is of the form $f(t)T|_{\gamma(t)}$ for an appropriately chosen function f.

(b) Assume, moreover, that (\mathcal{M}, g) is globally hyperbolic. Prove that, in this case

$$J^+(p) = \operatorname{clos}(I^+(p)).$$

- (c) Can you find an example of a (necessarily not globally hyperbolic) spacetime (\mathcal{M}, g) with a point $p \in \mathcal{M}$ such that $J^+(p)$ is not closed?
- **7.3** In this exercise, we will explore some of the geometric properties of the Riemann curvature tensor. To this end, let us fix a smooth Lorentzian manifold (\mathcal{M}, g) . Recall that

$$R(X,Y)Z \doteq \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.$$

- (A) Let $\phi: (-\epsilon, \epsilon) \times [0, 1] \to \mathcal{M}$ be a smooth map such that, for each $s \in (-\epsilon, \epsilon)$, $\gamma_s = \phi(s, \cdot)$ is a *geodesic*. Define the vector fields $T = d\phi(\frac{\partial}{\partial t})$ and $X = d\phi(\frac{\partial}{\partial s})$.
 - (a) Prove that [T, X] = 0. (Hint: Compare $\nabla_X T$ and $\nabla_T X$.)

Differential Geometry IV: General Relativity

G. Moschidis30 Oct. 2024

(b) Let us define the acceleration vector field

$$a = \nabla_T \nabla_T X.$$

Prove that

$$a = -R(X, T)T$$
.

Intuitively, X measures the infinitesimal separation between nearby geodesics; thus, when the right hand side above is non-zero, nearby geodesics tend to accelerate towards or away from each other.

- (B) Let $\gamma : [0,1] \to \mathcal{M}$ be a smooth curve. For any $t_1, t_2 \in [0,1]$, we will denote with $\mathbb{P}_{\gamma(t_1)\to\gamma(t_2)}: T_{\gamma(t_1)}\mathcal{M} \to T_{\gamma(t_2)}\mathcal{M}$ the parallel transport along γ from $\gamma(t_1)$ to $\gamma(t_2)$.
 - (a) Prove that, for any vector field Z along γ , as $\tau \to 0$:

$$\lim_{\tau \to 0} \frac{Z|_{t=0} - \mathbb{P}_{\gamma(\tau) \to \gamma(0)} Z|_{t=\tau}}{\tau} = -\nabla_{\dot{\gamma}(0)} Z.$$

Hint: Contruct a frame $\{e_i\}_{i=1}^n$ of vector fields along γ which are parallel translated, and express Z in components with respect to e_i .

(b) Let $\phi: [-1,1] \times [-1,1] \to \mathcal{M}$ be a smooth map with $p = \phi(0,0)$ and let $X = \phi^(\frac{\partial}{\partial x^1})$ and $Y = \phi^*(\frac{\partial}{\partial x^2})$. For any $s_1, s_2 \in (0,1)$, we will consider the rectangular loop $\gamma_{(s_1,s_2)}$ starting and ending at p which is of the form $\gamma_{(s_1,s_2)} = \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4$, where

$$\begin{split} \gamma_1(t) &= \phi(t,0), \quad t \in [0,s_1], \\ \gamma_2(s) &= \phi(s_1,s), \quad s \in [0,s_2], \\ \gamma_3(t) &= \phi(s_1-t,s_2), \quad t \in [0,s_1], \\ \gamma_3(s) &= \phi(0,s_2-s), \quad s \in [0,s_2]. \end{split}$$

For any $Z \in T_p \mathcal{M}$, let $Z_{(s_1,s_2)} \in T_p \mathcal{M}$ be the tangent vector obtained after parallel transporting Z_p around γ , i.e. following the successive mappings

$$Z \to Z' = \mathbb{P}_{\gamma_1(0) \to \gamma_1(s_1)} Z \to Z'' = \mathbb{P}_{\gamma_2(0) \to \gamma_2(s_2)} Z' \\ \to Z''' = \mathbb{P}_{\gamma_3(0) \to \gamma_3(s_1)} Z'' \to Z_{(s_1, s_2)} = \mathbb{P}_{\gamma_4(0) \to \gamma_4(s_2)} Z'''.$$

Show that

$$\lim_{s_2 \to 0} \lim_{s_1 \to 0} \frac{Z_{(s_1, s_2)} - Z}{s_1 s_2} = -R(X, Y)Z.$$

- **7.4** Let (\mathcal{M}, g) be a smooth Lorentzian manifold of dimension n+1 and let R be its Riemann curvature tensor.
 - (a) Show that, in any local coordinate chart (x^0, \ldots, x^n) on \mathcal{M} , the components of R satisfy the following identities:

Differential Geometry IV: General Relativity

G. Moschidis30 Oct. 2024

- 1. $R_{\alpha\beta\gamma\delta} = -R_{\alpha\beta\delta\gamma}$.
- 2. $R_{\alpha\beta\gamma\delta} = R_{\gamma\delta\alpha\beta}$.
- 3. $R_{\alpha\beta\gamma\delta} + R_{\alpha\delta\beta\gamma} + R_{\alpha\gamma\delta\beta} = 0$ (First Bianchi identity).
- 4. $\nabla_{\alpha} R_{\beta\gamma\delta\epsilon} + \nabla_{\gamma} R_{\alpha\beta\delta\epsilon} + \nabla_{\beta} R_{\gamma\alpha\delta\epsilon} = 0$ (Second Bianchi identity).

Prove that the Ricci tensor satisfies:

$$g^{\alpha\beta}\nabla_{\alpha}\left(Ric_{\beta\gamma}-\frac{1}{2}Rg_{\beta\gamma}\right)=0.$$

That is to say, the Einstein tensor of every Lorentzian manifold is divergence free.

- (b) Prove that, when n+1=3, $R_{\alpha\beta\gamma\delta}$ has exactly 6 independent components. Noting that this is the same number of independent components as for the Ricci tensor $Ric_{ij}=g^{ab}R_{iajb}$, can you prove that, when n+1=3, $Ric_{ij}=0$ implies that $R_{ijkl}=0$? How many independent components do these tensors have in dimension n+1=2?
- (c) When $n+1 \ge 3$, define the Weyl tensor by the relation

$$W_{\alpha\beta\gamma\delta} = R_{\alpha\beta\gamma\delta} + \frac{1}{n-1} \left(Ric_{\alpha\delta} g_{\beta\gamma} - Ric_{\alpha\gamma} g_{\beta\delta} + Ric_{\beta\gamma} g_{\alpha\delta} - Ric_{\beta\delta} g_{\alpha\gamma} \right) + \frac{1}{n(n-1)} R \left(g_{\alpha\gamma} g_{\beta\delta} - g_{\alpha\delta} g_{\beta\gamma} \right)$$

where $R = g^{ij}Ric_{ij}$ is the Ricci scalar. Prove that the Weyl tensor satisfies the same symmetries as the Riemann tensor, and moreover

$$g^{\alpha\gamma}W_{\alpha\beta\gamma\delta} = 0.$$

Deduce that $W_{\alpha\beta\gamma\delta} = 0$ when n+1=3.

*(d) Let $\phi: \mathcal{M} \to \mathbb{R}_+$ be a C^{∞} function and consider the conformal metric

$$\tilde{g} = \phi^2 g$$
.

Show that the Weyl tensors of g and \tilde{g} satisfy

$$\tilde{W}^{\alpha}_{\beta\gamma\delta} = W^{\alpha}_{\beta\gamma\delta},$$

i.e. W is a conformal invariant of g. Deduce that a necessary condition for a metric g to be conformally flat, i.e. of the form $\phi^2 \eta$, is that W = 0 (it can be shown that it is also a sufficient condition when $\dim \mathcal{M} > 3$).